A multiscale finite element method for the dynamic analysis of surfacedominated nanomaterials

نویسندگان

  • Harold S. Park
  • H. S. PARK
چکیده

The purpose of this article is to present a multiscale finite element method that captures nanoscale surface stress effects on the dynamic mechanical behavior of nanomaterials. The method is based upon arguments from crystal elasticity, i.e. the Cauchy–Born rule, but significantly extends the capability of the standard Cauchy–Born rule by accounting for critical nanoscale surface stress effects, which are well known to have a significant effect on the mechanics of crystalline nanostructures. We present the governing equations of motion including surface stress effects, and demonstrate that the methodology is general and thus enables simulations of both metallic and semiconducting nanostructures. The numerical examples on elastic wave propagation and dynamic tensile and compressive loading show the ability of the proposed approach to capture surface stress effects on the dynamic behavior of both metallic and semiconducting nanowires, and demonstrate the advantages of the proposed approach in studying the deformation of nanostructures at strain rates and time scales that are inaccessible to classical molecular dynamics simulations. Copyright q 2010 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

Damage Detection in Beam-like Structures using Finite Volume Method

In this paper the damage location in beam like-structure is determined using static and dynamic data obtained using finite volume method. The change of static and dynamic displacement due to damage is used to establish an indicator for determining the damage location. In order to assess the robustness of the proposed method for structural damage detection, three test examples including a static...

متن کامل

The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method

The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010